1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use std::ops::Range;

use super::{AsRangedCoord, DescreteRanged, Ranged, ReversableRanged};

macro_rules! impl_descrete_trait {
    ($name:ident) => {
        impl DescreteRanged for $name {
            fn next_value(this: &Self::ValueType) -> Self::ValueType {
                return *this + 1;
            }
        }
    };
}

macro_rules! impl_ranged_type_trait {
    ($value:ty, $coord:ident) => {
        impl AsRangedCoord for Range<$value> {
            type CoordDescType = $coord;
            type Value = $value;
        }
    };
}

macro_rules! make_numeric_coord {
    ($type:ty, $name:ident, $key_points:ident, $doc: expr) => {
        #[doc = $doc]
        pub struct $name($type, $type);
        impl From<Range<$type>> for $name {
            fn from(range: Range<$type>) -> Self {
                return Self(range.start, range.end);
            }
        }
        impl Ranged for $name {
            type ValueType = $type;
            fn map(&self, v: &$type, limit: (i32, i32)) -> i32 {
                let logic_length = (*v - self.0) as f64 / (self.1 - self.0) as f64;
                let actual_length = limit.1 - limit.0;

                if actual_length == 0 {
                    return limit.1;
                }

                return limit.0 + (actual_length as f64 * logic_length + 1e-3).floor() as i32;
            }
            fn key_points(&self, max_points: usize) -> Vec<$type> {
                $key_points((self.0, self.1), max_points)
            }
            fn range(&self) -> Range<$type> {
                return self.0..self.1;
            }
        }

        impl ReversableRanged for $name {
            fn unmap(&self, p:i32, (min,max): (i32, i32)) -> Option<$type> {
                if p < min.min(max) || p > max.max(min) {
                    return None;
                }

                let logical_offset = (p - min) as f64 / (max - min) as f64;

                return Some(((self.1 - self.0) as f64 * logical_offset + self.0 as f64) as $type);
            }
        }
    };
}

macro_rules! gen_key_points_comp {
    (float, $name:ident, $type:ty) => {
        fn $name(range: ($type, $type), max_points: usize) -> Vec<$type> {
            let range = (range.0 as f64, range.1 as f64);
            let mut scale = (10f64).powf((range.1 - range.0).log(10.0).floor());
            let mut digits = -(range.1 - range.0).log(10.0).floor() as i32 + 1;
            fn rem_euclid(a: f64, b: f64) -> f64 {
                if b > 0.0 {
                    a - (a / b).floor() * b
                } else {
                    a - (a / b).ceil() * b
                }
            }
            'outer: loop {
                let old_scale = scale;
                for nxt in [2.0, 5.0, 10.0].iter() {
                    let new_left = range.0 + scale / nxt - rem_euclid(range.0, scale / nxt);
                    let new_right = range.1 - rem_euclid(range.1, scale / nxt);

                    let npoints = 1 + ((new_right - new_left) / old_scale * nxt) as usize;

                    if npoints > max_points {
                        break 'outer;
                    }

                    scale = old_scale / nxt;
                }
                scale = old_scale / 10.0;
                if scale < 1.0 {
                    digits += 1;
                }
            }

            let mut ret = vec![];
            let mut left = range.0 + scale - rem_euclid(range.0, scale);
            let right = range.1 - rem_euclid(range.1, scale);
            while left <= right {
                let size = (10f64).powf(digits as f64 + 1.0);
                let new_left = (left * size).abs() + 1e-3;
                if left < 0.0 {
                    left = -new_left.round() / size;
                } else {
                    left = new_left.round() / size;
                }
                ret.push(left as $type);
                left += scale;
            }
            return ret;
        }
    };
    (integer, $name:ident, $type:ty) => {
        fn $name(range: ($type, $type), max_points: usize) -> Vec<$type> {
            let mut scale: $type = 1;
            'outter: while (range.1 - range.0 + scale - 1) as usize / (scale as usize) > max_points
            {
                let next_scale = scale * 10;
                for new_scale in [scale * 2, scale * 5, scale * 10].iter() {
                    scale = *new_scale;
                    if (range.1 - range.0 + *new_scale - 1) as usize / (*new_scale as usize)
                        < max_points
                    {
                        break 'outter;
                    }
                }
                scale = next_scale;
            }

            let (mut left, right) = (
                range.0 + (scale - range.0 % scale) % scale,
                range.1 - range.1 % scale,
            );

            let mut ret = vec![];
            while left <= right {
                ret.push(left as $type);
                left += scale;
            }

            return ret;
        }
    };
}

gen_key_points_comp!(float, compute_f32_key_points, f32);
gen_key_points_comp!(float, compute_f64_key_points, f64);
gen_key_points_comp!(integer, compute_i32_key_points, i32);
gen_key_points_comp!(integer, compute_u32_key_points, u32);
gen_key_points_comp!(integer, compute_i64_key_points, i64);
gen_key_points_comp!(integer, compute_u64_key_points, u64);

make_numeric_coord!(
    f32,
    RangedCoordf32,
    compute_f32_key_points,
    "The ranged coordinate for type f32"
);
make_numeric_coord!(
    f64,
    RangedCoordf64,
    compute_f64_key_points,
    "The ranged coordinate for type f64"
);
make_numeric_coord!(
    u32,
    RangedCoordu32,
    compute_u32_key_points,
    "The ranged coordinate for type u32"
);
make_numeric_coord!(
    i32,
    RangedCoordi32,
    compute_i32_key_points,
    "The ranged coordinate for type i32"
);
make_numeric_coord!(
    u64,
    RangedCoordu64,
    compute_u64_key_points,
    "The ranged coordinate for type u64"
);
make_numeric_coord!(
    i64,
    RangedCoordi64,
    compute_i64_key_points,
    "The ranged coordinate for type i64"
);

impl_descrete_trait!(RangedCoordu32);
impl_descrete_trait!(RangedCoordi32);
impl_descrete_trait!(RangedCoordu64);
impl_descrete_trait!(RangedCoordi64);

impl_ranged_type_trait!(f32, RangedCoordf32);
impl_ranged_type_trait!(f64, RangedCoordf64);
impl_ranged_type_trait!(i32, RangedCoordi32);
impl_ranged_type_trait!(i64, RangedCoordi64);
impl_ranged_type_trait!(u32, RangedCoordu32);
impl_ranged_type_trait!(u64, RangedCoordu64);

/*
pub fn keypoints_i64(range:(i64,i64), n:usize) -> Vec<i64> {
    compute_i64_key_points(range,n)
}*/

#[cfg(test)]
mod test {
    use super::*;
    use crate::coord::*;
    #[test]
    fn test_key_points() {
        let kp = compute_i32_key_points((0, 999), 28);

        assert!(kp.len() > 0);
        assert!(kp.len() <= 28);
    }

    #[test]
    fn test_linear_coord_map() {
        let coord: RangedCoordu32 = (0..20).into();
        assert_eq!(coord.key_points(11).len(), 11);
        assert_eq!(coord.key_points(11)[0], 0);
        assert_eq!(coord.key_points(11)[10], 20);
        assert_eq!(coord.map(&5, (0, 100)), 25);

        let coord: RangedCoordf32 = (0f32..20f32).into();
        assert_eq!(coord.map(&5.0, (0, 100)), 25);
    }

    #[test]
    fn test_linear_coord_system() {
        let _coord =
            RangedCoord::<RangedCoordu32, RangedCoordu32>::new(0..10, 0..10, (0..1024, 0..768));
    }
}