1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use super::{AsRangedCoord, Ranged, RangedCoordf64};
use std::marker::PhantomData;
use std::ops::Range;
pub trait LogScalable: Clone {
fn as_f64(&self) -> f64;
fn from_f64(f: f64) -> Self;
}
macro_rules! impl_log_scalable {
(i, $t:ty) => {
impl LogScalable for $t {
fn as_f64(&self) -> f64 {
if *self != 0 {
return *self as f64;
}
return 0.5;
}
fn from_f64(f: f64) -> $t {
f.round() as $t
}
}
};
(f, $t:ty) => {
impl LogScalable for $t {
fn as_f64(&self) -> f64 {
*self as f64
}
fn from_f64(f: f64) -> $t {
f as $t
}
}
};
}
impl_log_scalable!(i, u8);
impl_log_scalable!(i, u16);
impl_log_scalable!(i, u32);
impl_log_scalable!(i, u64);
impl_log_scalable!(f, f32);
impl_log_scalable!(f, f64);
pub struct LogRange<V: LogScalable>(pub Range<V>);
impl<V: LogScalable> From<LogRange<V>> for LogCoord<V> {
fn from(range: LogRange<V>) -> LogCoord<V> {
LogCoord {
linear: (range.0.start.as_f64().ln()..range.0.end.as_f64().ln()).into(),
logic: range.0,
marker: PhantomData,
}
}
}
impl<V: LogScalable> AsRangedCoord for LogRange<V> {
type CoordDescType = LogCoord<V>;
type Value = V;
}
pub struct LogCoord<V: LogScalable> {
linear: RangedCoordf64,
logic: Range<V>,
marker: PhantomData<V>,
}
impl<V: LogScalable> Ranged for LogCoord<V> {
type ValueType = V;
fn map(&self, value: &V, limit: (i32, i32)) -> i32 {
let value = value.as_f64();
let value = value.max(self.logic.start.as_f64()).ln();
self.linear.map(&value, limit)
}
fn key_points(&self, max_points: usize) -> Vec<Self::ValueType> {
let tier_1 = (self.logic.end.as_f64() / self.logic.start.as_f64())
.log10()
.abs()
.floor() as usize;
let tier_2_density = if max_points < tier_1 {
0
} else {
let density = 1 + (max_points - tier_1) / tier_1;
let mut exp = 1;
while exp * 10 <= density {
exp *= 10;
}
exp - 1
};
let mut multiplier = 10.0;
let mut cnt = 1;
while max_points < tier_1 / cnt {
multiplier *= 10.0;
cnt += 1;
}
let mut ret = vec![];
let mut val = (10f64).powf(self.logic.start.as_f64().log10().ceil());
while val <= self.logic.end.as_f64() {
ret.push(V::from_f64(val));
for i in 1..=tier_2_density {
let v = val
* (1.0
+ multiplier / f64::from(tier_2_density as u32 + 1) * f64::from(i as u32));
if v > self.logic.end.as_f64() {
break;
}
ret.push(V::from_f64(v));
}
val *= multiplier;
}
ret
}
fn range(&self) -> Range<V> {
self.logic.clone()
}
}